Effective Wrapper-Filter hybridization through GRASP Schemata

نویسنده

  • Mohamed Amir Esseghir
چکیده

Of all of the challenges which face the selection of relevant features for predictive data mining or pattern recognition modeling, the adaptation of computational intelligence techniques to feature selection problem requirements is one of the primary impediments. A new improved metaheuristic based on Greedy Randomized Adaptive Search Procedure (GRASP) is proposed for the problem of Feature Selection. Our devised optimization approach provides an effective scheme for wrapper-filter hybridization through the adaptation of GRASP components. The paper investigates, the GRASP component design as well as its adaptation to the feature selection problem. Carried out experiments showed Empirical effectiveness of the devised approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression

Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...

متن کامل

A GRASP algorithm for fast hybrid

8 Feature subset selection is a key problem in the data-mining classification task that helps to obtain more compact and understandable models without degrading (or even improving) their performance. In this work we focus on FSS in high-dimensional datasets, that is, with a very large number of predictive attributes. In this case, standard sophisticated wrapper algorithms cannot be applied beca...

متن کامل

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques

Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...

متن کامل

Metaheuristic Hybridization with Grasp

GRASP, or greedy randomized adaptive search procedure, is a multi-start metaheuristic that repeatedly applies local search starting from solutions constructed by a randomized greedy algorithm. In this chapter we consider ways to hybridize GRASP to create new and more effective metaheuristics. We consider several types of hybridizations: constructive procedures, enhanced local search, memory str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010